Equations in Quadratic form. $12 / 3 / 12$
Steps for Equ. In Quadratic form:
(1) - Let " t " equal the middle term
(2) - Square both sides to get
(3) - Substitute and solve by any method (factor, complete square, quadratic Equ.)
$\otimes \psi \otimes(4) \cdot$ Substitute t values to find values for original $\otimes \psi \psi$ variables!

Solve
Example
(1) $(3 x-2)^{2}-5(3 x-2)-6=0$
(2)

$$
t=3 x-2, t^{2}=(3 x-2)^{2}
$$

$$
\begin{aligned}
& 3 x+5 \sqrt{x}-2=0 \\
& t=\sqrt{x}, t^{2}=x \\
& 3 t^{2}+5 t-2=0
\end{aligned}
$$

Anytime you

$$
t^{2}-5 t-6=0
$$

$-6 / \quad(t+3)(3 t-1)=0$ get rid of " $\sqrt{ }$ " you must check $\frac{-6}{t}$ for extraneous solutions!

$$
\begin{aligned}
& 6=3 x-2 \quad 1=3 x-2 \\
& +2+2 \quad+2+2 \\
& \frac{8}{3}=\frac{3 x}{3} \quad \frac{1}{3}=\frac{3 x}{3} \\
& x=\frac{8}{3}, \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Check } \\
& 3(9)+5(\sqrt{9})-2=0 \\
& 27+15-2=0 \\
& \text { No }
\end{aligned}
$$

$$
3\left(\frac{1}{9}\right)+5 \sqrt{\frac{1}{9}}-2=0
$$

$$
\begin{gathered}
\frac{1}{3}+\frac{5}{3}-2=0 \\
2-2=0
\end{gathered}
$$

yes

$$
\frac{9}{t} \int_{7}^{-\frac{-2}{t}}
$$

$$
\begin{aligned}
& x^{4}+7 x^{2}-18=0 \\
& t=x^{2}, t^{2}=x^{4} \\
& t^{2}+7 t-18=0 \\
& (t+9)(t-2)=0 \\
& t=-9,2 \\
& \sqrt{-9}=\sqrt{x^{2}} \sqrt{2}=\sqrt{x^{2}} \\
& x= \pm 3 i, \pm \sqrt{2}
\end{aligned}
$$

