Name:

The Zero-product Property

Here is a question that you will eventually answer at the end of this worksheet "if $a \cdot b=0$, then what must be true about a or b ?"

Part 1 Calculate the following:
$4 \cdot 3=\quad . \quad 7 \cdot 1=$ \qquad
$5 \cdot 8=$ \qquad . $4 \cdot 8=$ \qquad
$3 \cdot 2=$ \qquad . $5 \cdot 0=$ \qquad
$4 \cdot 0=$ \qquad . $0 \cdot 1=$ \qquad
$9 \cdot 1=$ \qquad . $0 \cdot 0=$ \qquad
$0 \cdot 3=$ \qquad . $4 \cdot 4=$ \qquad
Part 2 Answer the following questions
What do you notice about the products from part 1? When does each product equal zero?

If I know that a times 6 is zero (in other words, if I know that $a \cdot 6=0$) what must a be? How do you know?

If I know that 12 times b is zero (in other words, if I know that $12 \cdot b=0$) what must b be? How do you know?

So if I know that $a \cdot b=0$, what must be true about a or b ?

