19 The chart below shows an expression evaluated for four different values of x.

\boldsymbol{x}	$\boldsymbol{x}^{2}+\boldsymbol{x + 5}$
1	7
2	11
6	47
7	61

Josiah concluded that for all positive values of $x, x^{2}+x+5$ produces a prime number. Which value of \boldsymbol{x} serves as a counterexample to prove Josiah's conclusion false?

A 5
B 11
C 16
D 21

CSA20027

20 John's solution to an equation is shown below.
Given: $\quad x^{2}+5 x+6=0$
Step 1: $\quad(x+2)(x+3)=0$
Step 2: $\quad x+2=0$ or $x+3=0$
Step 3: $\quad x=-2$ or $x=-3$
Which property of real numbers did John use for Step 2?

A multiplication property of equality
B zero product property of multiplication
C commutative property of multiplication
D distributive property of multiplication over addition

21 Stan's solution to an equation is shown below.
Given: $n+8(n+20)=110$
Step 1: $\quad n+8 n+20=110$
Step 2: $\quad 9 n+20=110$
Step 3: $\quad 9 n=110-20$
Step 4: $\quad 9 n=90$
Step 5: $\quad \frac{9 n}{9}=\frac{90}{9}$
Step 6: $\quad n=10$
Which statement about Stan's solution is true?
A Stan's solution is correct.
B Stan made a mistake in Step 1.
C Stan made a mistake in Step 3.
D Stan made a mistake in Step 5 .

22 When is this statement true?

The opposite of a number is less than the original number.

A This statement is never true.
B This statement is always true.
C This statement is true for positive numbers.
D This statement is true for negative numbers.

23 What is the y-intercept of the graph of $4 x+2 y=12 ?$

A -4
B -2
C 6
D 12

24
Which inequality is shown on the graph below?

A $y<\frac{1}{2} x-1$
B $\quad y \leq \frac{1}{2} x-1$
C $y>\frac{1}{2} x-1$
D $\quad y \geq \frac{1}{2} x-1$

25 Which best represents the graph of $y=2 x-2$?

A

B

C

D

Which inequality does the shaded region of the graph represent?

A $3 x+y \leq 2$
B $\quad 3 x+y \geq 2$
C $\quad 3 x+y \leq-2$
D $3 x+y \geq-2$
27

Which equation best represents the graph above?

A $y=\mathrm{x}$
B $y=2 x$
C $y=x+2$
D $y=2 x+2$

28 Which point lies on the line defined by $3 x+6 y=2$?

A $(0,2)$

B $(0,6)$

C $\left(1,-\frac{1}{6}\right)$
D $\quad\left(1,-\frac{1}{3}\right)$

29 What is the equation of the line that has a slope of 4 and passes through the point $(3,-10)$?

A $y=4 x-22$
B $y=4 x+22$
C $y=4 x-43$
D $y=4 x+43$
CSA10150

30 The data in the table show the cost of renting a bicycle by the hour, including a deposit.

Renting a Bicycle

Hours (\boldsymbol{h})	Cost in dollars (\boldsymbol{c})
2	15
5	30
8	45

If hours, h, were graphed on the horizontal axis and cost, c, were graphed on the vertical axis, what would be the equation of a line that fits the data?

A $c=5 h$

B $\quad c=\frac{1}{5} h+5$

C $c=5 h+5$

D $c=5 h-5$

31 Some ordered pairs for a linear function of x are given in the table below.

x	y
1	1
3	7
5	13
7	19

Which of the following equations was used to generate the table above?

A $y=2 x+1$
B $y=2 x-1$
C $y=3 x-2$
D $y=4 x-3$

32 The equation of line l is $6 x+5 y=3$, and the equation of line q is $5 x-6 y=0$. Which statement about the two lines is true?

A Lines l and q have the same y-intercept.
B Lines l and q are parallel.
C Lines l and q have the same x-intercept.
D Lines l and q are perpendicular.

33 Which equation represents a line that is parallel to $y=-\frac{5}{4} x+2$?

A $y=-\frac{5}{4} x+1$
B $y=-\frac{4}{5} x+2$
C $y=\frac{4}{5} x+3$
D $y=\frac{5}{4} x+4$

34 Which graph best represents the solution to this system of inequalities?

$$
\left\{\begin{array}{l}
2 x \geq y-1 \\
2 x-5 y \quad 10
\end{array}\right.
$$

A

B

C

D

35 What is the solution to this system of equations?

$$
\left\{\begin{array}{l}
y=-3 x-2 \\
6 x+2 y=-4
\end{array}\right.
$$

A $(6,2)$
B $(1,-5)$
C no solution
D infinitely many solutions

36 Which ordered pair is the solution to the system of equations below?

$$
\left\{\begin{array}{l}
x+3 y=7 \\
x+2 y=10
\end{array}\right.
$$

A $\left(\frac{7}{2}, \frac{13}{4}\right)$
B $\left(\frac{7}{2}, \frac{17}{5}\right)$
C $(-2$,
D $(16,-3)$

Marcy has a total of $\mathbf{1 0 0}$ dimes and quarters. If the total value of the coins is $\$ 14.05$, how many quarters does she have?

A 27
B 40
C 56
D 73

38 Which of the following best describes the graph of this system of equations?

$$
\left\{\begin{array}{l}
y=-2 x+3 \\
5 y=-10 x+15
\end{array}\right.
$$

A two identical lines
B two parallel lines
C two lines intersecting in only one point
D two lines intersecting in only two points

39

$$
\frac{5 x^{3}}{10 x^{7}}=
$$

A $2 x^{4}$

B $\frac{1}{2 x^{4}}$
C $\frac{1}{5 x^{4}}$
D $\frac{x^{4}}{5}$
$40\left(4 x^{2}-2 x+8\right)-\left(x^{2}+3 x-2\right)=$
A $\quad 3 x^{2}+x+6$
B $\quad 3 x^{2}+x+10$
C $3 x^{2}-5 x+6$
D $3 x^{2}-5 x+10$

41 The sum of two binomials is $5 x^{2}-6 x$. If one of the binomials is $3 x^{2}-2 x$, what is the other binomial?

A $2 x^{2}-4 x$
B $2 x^{2}-8 x$
C $8 x^{2}+4 x$
D $8 x^{2}-8 x$

